HEMATOLOGY EBOOK

KNOWLEDGE IS POWER

Stem cell controversy

leave a comment »

The stem cell controversy is the ethical debate centered only on reearch involving the creation, usage and destruction of human embryos. Most common, this contoversy focuses on embryonic stem cells.

Background

Since stem cell have the ability to differentiate into any type of cell, they offer something in the development of medical treatments for a wide range of conditions. Treatments that have been proposed include treatment for physical trauma, degenerative conditions, and genetic diseases (in combination with gene therapy). Yet further treatments using stem cells could potentially be developed thanks to their ability to repair extensive tissue damage.

Great levels of success and potential have been demostrated from research using adult stem cells. Earlier this ear, the FDA approved the firat human clinical trials using embryonic stem cells. Some researchers are of the opinion that the differentiation potential of embryonic stem cells in broader than most adult stem cells. Embryonic stem cells can become all cell types of the body because they are Pluripotent. Adult stem cells are generally limited to differentiating into different cell types of their tissue origin. However, some evidence sugests taht adult stem cell plasticity may exist, incrasing the number of cell tpes a given adult stem cell can become. In addition, embryonic stem cells are considered more useful for nervous system therapies, because researchers have struggled to identify and isolate neural progenitors from adult tissues. Embryonic stem cells, however, might be rejected by the immune system –  a problem which wouldn’t occur if the patient received his or her own stem cells.

Some stem cell researchers are working to develop techniques of isolating stem cells that are as potent as embryonic stem cells, but do not require a human embryo.

Some believe that human skin cells can be coaxed to “defferrentiate” and devert to an embryonic state. Researchers at Harvard Universuty, led by Kevin Eggan, have attempted to transfer the nucleus of a somatic cell into an existing embryonic stem cell, thus creating a new stem cell line. Another study pulished in August 2006 also indicates that differentiated cells can be reprogrammed to an embryonic-like state by introducing four specific factors, resulting in induced pluripotent stem cells.

Researchers at Advanced Cell Technology, led by Robert Lanza, reported the successful derivation of a stem cell line using a process similar to preimplantation genetic diagnosis, inwhich a single blastomere is extracted from a blastocyst. At least 2007 meeting of the International Society for Stem Cell Research (ISSCR), Lanza announced that his team had succeeded in producing three new stem cell lines without destroying the parent embryos. “These are the first human embryonic cell lines in existence that didn’t result from the destruction of an embtyo. “Lanza is currently in discussions with the National Institutes of Health (NIH) to determine whether the new technique sidesteps U.S. restrictions on federal funding for ES cell research.

Accordig to a January 9, 2007 Daily Telegraph (London) article reporting on a statement by Dr. Anthony Atala of Wake Forest University, the fluid surrounding the fetus has been found to contain stem cells, that, when utilized correctly, “can be differentiated towards cell types such as fat, bone, muscle, blood vessel, nerve and liver cells”, according to the article. The extraction of this fluid is not thought to harm the fetus in any way. “Our hope is that these cells will provide a valuable resource for tissue repair and for engineered organs as well,” said Dr Atala.

Viewpoints

The status of the human embryo and human embryonic stem cell research is a controversial issue as, with the present state of technology, the creation of a human embryonic stem cell line requires the destruction of a human embryo. Stem cell debates have motivated and reinvigorated the pro-life movement, whose members are concerned with the rights and status of the embryo as an early-aged human life. They believe that embryonic stem cell research instrumentalizes and violates the sanctity of life and is tantamount to murder. The fundamental assertion of those who oppose embryonic stem cell research is the belief that human life is inviolable, combined with the fact that human life begins when a sperm cell fertilizes an egg cell to form a single cell.

A portion of stem cell researchers use embryos that were created but not used in vitro fertility treatments to derive new sterm cell lines. Most of these embryos are to be destroyed, or stored for long periods of time, long past their viable storage life. In the United States alone, there have been estimates of at least 400,000 such embryos. This has led some opponents of abortion, such as Senator Orrin Hatch, to support human embryonic stem cell research.

Medical researchers widely submit that stem cell research has the potential to dramatically alter approaches to understanding and treating diseases, and to alleviate suffering. In the future, most medical researchers anticipate being able to use technologies derived from stem cell research to treat a variety of diseases and impairments. Spinal cord injuries and Parkinson’s disease are two examples that have been championed by high-profile media personalities (for instance, Christopher Reeve and Michael J. Fox). The anticipated medical benefits of stem cell research add urgency to the debates, which has been appealed to by proponents of embryonic stem cell research.

In August, 2000, The U.S. National Institutes of Health’s Guidelines stated:

“…research involving human pluripotent stem cells…promises new treatments and possible cures for many debilitating diseases and injuries, including Parkinson’s disease, diabetes, heart disease, multiple sclerosis. burns and spinal cord injuries. The NIH believes the potential medical benefits of human pluripotent stem cell technology are compelling and worthy of persuit in accordance with appropriate ethical standards.

In 2006, researchers at Advanced Cell Technology of Worcester, Mass., succeeded in obtaining stem cells from mouse embryos without destroying the embryos. If this technique and its reliability are improved, it would alleviate some of the ethical concerns related to embryonic stem cell research.

Another technique announced in 2007 may also defuse the longstanding debate and controversy. Research teams in the United States and Japan have developed a simple and cost effective method of reprogramming human skin cells to function much like embryonic stem cells by introducing artificil viruses.. While extracting and cloning stem cells is complex and extremely expensive, the newly discovered method of reprogramming cells is much cheaper. However, the technique may disrupt the DNA in the new stem cells, resulting in damaged and cancerous tissue. More research will be required before non-cancerous stem cells can be created.

Endorsement

  • Embryonic stem cells have the potential to grow indefinitely in a laboratory environment and can differentiate into almost all types of bodily tissue. This makes embryonic stem cells a prospect for cellular therapies to treat a wide range of diseases.

Human potential and humanity

This argument often goes hand-in-hand with the utilitarian argument, and can be presented in several forms:

  • Embryos are not equivalent to human life while they are still in capable of surviving outside the womb (i.e. they only have the potential for life)
  • More than a third of zygotes do not implant after conception. Thus, far more embryos are lost due to chance than are proposed to be used for embryonic stem cell research or treatments.
  • Blastocysts are a cluster of human cells that have not differentiated into distict organ tissue; making cells of the inner cell mass no more “human” than a skin cell.
  • Some parties contend that embryos are not humas, believing that the life of Homo sapiens only begins when the heartbeat develops, which is during the 5th week of pregnancy, or when the brain begins developing activity, which has been detected at 54 days after conception.

Efficiency

  • In vitro fertilization (IVF) generates large numbers of unused embryos (e.g.70,000 in Australian alone). Many of these thousands of IVF embryos are slated for destruction. Using them for scientific research utilizes a resource that would otherwisw be wasted.
  • While the destruction of human embryos is required to establish a stem cell line, no new embryos have to be destroyed to work with existing stem cell lines. It would be wasteful not to continue to make use of these cell lines as a resource.
  • Abortions are legal in many countries and jurisdictions. A logical argument follows that if these embryos are being destroyed anyway, why not use the, for stem cell research or treatments?

Superiority

This is usually presented as a caounter-argument to using adult stem cells as am alternative that doesn’t involve embryonic destruction.

  • Embryonic stem cells make up a significant proportion of a developing embryo, while adult stem cells exist as minor populations within a mature individual (e.g. in every 1,000 cells of the bone marrow, only 1 will be a usable stem cell). Thus, embryonic stem cells are likel to be easier to isolate and grow ex vivo than adult stem cells.
  • Embryonic stem cells divide more rapidly than adult stem cells, potentially making it easier to regenerate large numbers of cells for therapeutic means. In contrast, adult stem cell might not divide fast enough to offer immediate treatment.
  • Embryonic stem cells have greater plasticity, potentially allowing them to treat a wider range of diseases.
  • Adult stem cells from the patient’s own body might not be effective in treatment of genetic disorders. Allogeneic embryonic stem cell transplantation (i.e. from a healthy donor) may be more practical in these cases than gene therapy of a patient’s own cell.
  • DNA abnormalities found in adult stem cells that are caused by toxins and sunlight may make them poorly suited for treatment.
  • Embryonic stem cells have been shown to be effective in treating heart damage in mice.
  • Embryonic stem cels have the potential to cure chronic and degenerative disease which current medicine has been unable to effectively treat.

Beginning of life

  • Before the primitive streak is formed when the embryo attaches to the uterus at approximately 14 days after fertilization, a single fertilized egg can split in two to form identical twins, or a pair of embryos that would have resulted in fraternal twins can fuse together and develop into one person (a tetragametic chimera). Since a fertilized egg has the potential to be two individuals or half of one,  some believe it can only be considered a potential person, not an actual one. Those who subscribe to this belief then hold that destroying a blastovyst for embryonic stem cells is ethical.

Objection

Value of life

The deliberate destruction of a human embro is typically interpreted as being incompatible with Roman Catholic doctrine. Based upon these interpretations, some Catholics have suggested that human bastocysts are inherently valuable and should not be voluntarily destroyed.

Viability is another standard under which embryos and fetuses have been regarded as human lives. In the United States, the 1973 Supreme Court case of Roe v.Wade concluded that viability determined the permissibility of abortions performed for reasons other than the protection of the woman’s health, defining viability as the point at which a fetus is “potentially able to live outside the mother’s womb, albeit with artificial aid.” The point of viability was 24 to 28 weeks when the case was decided and has since moved to about 22 weeks due to advancement in medical technology.

Better alternatives

This argument is used by opponents of embryonic destruction as well as researchers specializing in adult stem cell research.

It is often claimed by pro-life supporters that the use of adult stem cells from sources such as umbilical cord blood has consistently produced more promising results than the use of embryonic stem cells.Furthermore, adult stem cell research may be able to make greater advances if less money and resources were channeled into embryonic stem cell research.

Adult stem cells have already produced therapies, while embryonic stem cells have not.Moreover, there have been many advances in adult stem cell research, including a recent study where pluripotent adult stem cells were manufactured from differentiated fibroblast by the addition of specific transcription factors. Newly created stem cells were developed into an embryo and were integrated into newborn mouse tissues, analogous to the properties of embryonic stem cells.

This argument remains hotly debated on both sides. Those critical of embryonic stem cell research point to a current lack of practical treatments, while supporters argue that advances will come with more time and that breakthroughs cannot be predicted.

Stated views of groups

Governmental policy stances in Europe

Austria, Denmark, France, Germany, and Ireland do not allow the production of embryonic stem cell lines, but the creation of embryonic stem cell lines is permitted in Finland, Greece, the Netherlands, Swedenm and the United Kingdom.

Governmantal Policy debate in the United States

Origins

In 1973, Roe v. Wade legalized abortion in the United States. Five years later, the first successful human in vitro fertilization resulted in the birth of Louise Brown in England. These developments prompted the federal government to create regulations barring the use of federal funds for research that experimented on human embryos. In 1995, the NIH Human Embryo Research Panel advised the administration of President Bill Clinton to permit federal funding for research on embryos left over from in vitro fertility treatments and also recommended federal funding of research on embryos specifically created for experimentation. In response to the panel’s recommendations, the Clinton administration, citing moral and ethical concerns, declined to fund research on embryos created solely for research purposes, but did agree to fund research on left-over embryos created by in vitro fertility treatments. At this point, the Congress intervened and passed the Dickey Amendment in 1995 (the final bill, which included the Dickey Amendment, was signed into law by Bill Clinton) which prohibited any federal funding for the Department of Health and Human Services be used for research that resulted in the destruction of an embryo regardless of the source of that embryo.

In 1998, privately funded research led to the breakthrough discovery of Human Embryonic Stem Cells (hESC). This prompted the Clinton Administration to re-examine guidelines for federal funding of embryonic research. In 1999, the president’s National Bioethics Advisory Commission recommended that hESC harvested from embryos discarded after in vitro fertility treatments, but not from embryos created expressly for experimentation, be eligible for federal funding. Even though embryos are always destroyed in the process of harvesting hESC, the Clinton Administration decided that it would be permissible under the Dickey Amendment to fund hESC research as long as such research did not itself directly cause the destruction of an embryo. Therefore, HHS issued its proposed regulation concerning hESC funding in 2001. Enactment of the new guidelines was delayed by the incoming George W. Bush administration which decided to reconsider the issue.

President Bush announced, on August 9, 2001 that federal funds, for the first time, would be made available for hESC research on currently existing embryonic stem cell lines. President Bush authorized research on existing human embryonic stem cell lines, not on human embryos under a specific, unrealistic timeline in which the stem cell lines must have been developed. However, the Bush Administration chose not to permit taxpayer funding for research on hESC cell lines not currently in existence, thus limiting federal funding to research in which “the life-and-death decision has already been made”. The Bush Administration’s guidelines differ from the Clinton Administration guidelines which did not distinguish between currently existing and not-yet-existing hESC. Both the Bush and Clinton guidelines agree that the federal government should not fund hESC research that directly destroys embryos.

Neither Congress nor any administration has ever prohibited private funding of embryonic research. Public and private funding of research on adult and cord blood stem cells is unrestricted.

 U.S. Congressional response

In April 2004, 206 members of Congress signed a letter urging President Bush to expand federal funding of embryonic stem cell research beyond what Bush had already supported.

In May 2005, the House of Representatives voted 238-194 to loosen the limitations on federally funded embryonic stem-cell research — by allowing government-funded research on surplus frozen embryos from in vitro fertilization clinics to be used for stem cell research with the permission of donors — despite Bush’s promise to veto the bill if passed. On July 29, 2005, Senate Majority Leader William H. Frist (R-TN), announced that he too favored loosening restrictions on federal funding of embryonic stem cell research. On July 18, 2006, the Senate passed three different bills concerning stem cell research. The Senate passed the first bill (Stem Cell Research Enhancement Act), 63-37, which would have made it legal for the Federal government to spend Federal money on embryonic stem cell research that uses embryos left over from in vitro fertilization procedures.On July 19, 2006 President Bush vetoed this bill. The second bill makes it illegal to create, grow, and abort fetuses for research purposes. The third bill would encourage research that would isolate pluripotent, i.e., embryonic-like, stem cells without the destruction of human embryos.

In 2005 and 2007, Congressman Ron Paul introduced the Cures Can Be Found Act, with 10 cosponsors. With an income tax credit, the bill favors research upon non embryonic stem cells obtained from placentas, umbilical cord blood, amniotic fluid, humans after birth, or unborn human offspring who died of natural causes; the bill was referred to committee. Paul argued that hESC research is outside of federal jurisdiction either to ban or to subsidize.

Bush vetoed another bill, the Stem Cell Research Enhancement Act of 2007,which would have amended the Public Health Service Act to provide for human embryonic stem cell research. The bill passed the Senate on April 11 by a vote of 63-34, then passed the House on June 7 by a vote of 247-176. President Bush vetoed the bill on July 19, 2007.

On March 9, 2009, President Obama repealed a ban enacted under President Bush, thus allowing federal funds to be applied beyond what was authorized for funding under the previous president. Two days after Obama reversed the ban, the President then signed the Omnibus Appropriations Act of 2009, which still contained the long-standing Dickey-Wicker provision which bans federal funding of “research in which a human embryo or embryos are destroyed, discarded, or knowingly subjected to risk of injury or death;”the Congressional provision effectively prevents federal funding being used to create new stem cell lines by many of the known methods. So, while scientists might not be free to create new lines with federal funding, President Obama’s policy allows the potential of applying for such funding into research involving the hundreds of existing stem cell lines as well as any further lines created using private funds or state-level funding. The ability to apply for federal funding for stem cell lines created in the private sector is a significant expansion of options over the limits imposed by President Bush, who restricted funding to the 21 viable stem cell lines that were created before he announced his decision in 2001.

 Funding

In 2005 the NIH funded $607 million worth of stem cell research, of which $39 million was specifically used for hESC. Sigrid Fry-Revere has argued that private organizations, not the federal government, should provide funding for stem-cell research, so that shifts in public opinion and government policy would not bring valuable scientific research to a grinding halt

In 2005 the State of California took out 3 billion dollars in bond loans to fund embryonic stem cell research in that state.

 

 

 

 

 

 

Leave a comment